Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 203: 46

Answer

$$ - \frac{1}{2}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \left( {x - \sqrt {{x^2} + x} } \right) \cr & {\text{Rationalizing}} \cr & {\text{ = }}\mathop {\lim }\limits_{x \to \infty } \left[ {\frac{{x - \sqrt {{x^2} + x} }}{1} \times \frac{{x + \sqrt {{x^2} + x} }}{{x + \sqrt {{x^2} + x} }}} \right] \cr & {\text{ = }}\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} - {{\left( {\sqrt {{x^2} + x} } \right)}^2}}}{{x + \sqrt {{x^2} + x} }}} \right) \cr & {\text{ = }}\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} - {x^2} - x}}{{x + \sqrt {{x^2} + x} }}} \right) \cr & {\text{ = }}\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{ - x}}{{x + \sqrt {{x^2} + x} }}} \right) \cr & {\text{Divide the numerator and denominator by }}x \cr & {\text{ = }}\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{ - \frac{x}{x}}}{{\frac{x}{x} + \sqrt {\frac{{{x^2}}}{{{x^2}}} + \frac{x}{{{x^2}}}} }}} \right) \cr & {\text{ = }}\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{ - 1}}{{1 + \sqrt {1 + \frac{1}{x}} }}} \right) \cr & {\text{Evaluate the limit}} \cr & {\text{ = }}\frac{{ - 1}}{{1 + \sqrt {1 + \frac{1}{\infty }} }} \cr & {\text{ = - }}\frac{1}{{1 + 1}} \cr & = - \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.