Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 203: 45

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to - \infty } \left( {x + \sqrt {{x^2} + 3} } \right) \cr & {\text{Rationalizing}} \cr & {\text{ = }}\mathop {\lim }\limits_{x \to - \infty } \left[ {\frac{{x + \sqrt {{x^2} + 3} }}{1} \times \frac{{x - \sqrt {{x^2} + 3} }}{{x - \sqrt {{x^2} + 3} }}} \right] \cr & {\text{ = }}\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{x^2} - {{\left( {\sqrt {{x^2} + 3} } \right)}^2}}}{{x + \sqrt {{x^2} + 3} }}} \right) \cr & {\text{ = }}\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{x^2} - {x^2} - 3}}{{x + \sqrt {{x^2} + 3} }}} \right) \cr & {\text{ = }} - \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{3}{{x + \sqrt {{x^2} + 3} }}} \right) \cr & {\text{Evaluate the limit}} \cr & {\text{ = }} - \left( {\frac{3}{{ - \infty + \sqrt {{{\left( { - \infty } \right)}^2} + 3} }}} \right) \cr & {\text{ = }} - \frac{3}{{ - \infty }} \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.