Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 203: 65

Answer

$$\eqalign{ & {\text{Intercepts: none}} \cr & {\text{Symmetry: }}x{\text{ - axis}} \cr & {\text{There are no relative extrema}} \cr & {\text{Vertical asymptote at }}x = 0 \cr & {\text{Horizontal asymptote }}y = 0 \cr} $$

Work Step by Step

$$\eqalign{ & x{y^2} = 9 \cr & {\text{Solve for }}{y^2} \cr & {y^2} = \frac{9}{x} \cr & {\text{The domain is }}x > 0,{\text{ because }}{y^2}{\text{ is always positive}}{\text{.}} \cr & \cr & {\text{Find the intercepts}} \cr & *{\text{For }}y = 0 \cr & {0^2} = \frac{9}{x},{\text{ Then there is no }}x{\text{ intercept}}{\text{.}} \cr & *{\text{For }}x = 0 \cr & {y^2} = \frac{9}{0},{\text{ Then there is no }}y{\text{ intercept}}{\text{.}} \cr & {\text{Intercepts: none}} \cr & \cr & {\text{*Calculate the asymptotes}} \cr & x{y^2} = 9 \cr & {y^2} = \frac{9}{x} \cr & {\text{Undefined at }}x = 0 \cr & {\text{Vertical asymptote at }}x = 0 \cr & {y^2} = \frac{9}{x} \to y = \pm \frac{3}{{\sqrt x }} \cr & \pm \mathop {\lim }\limits_{x \to \infty } \frac{3}{{\sqrt x }} = 0 \cr & {\text{Horizontal asymptote }}y = 0 \cr & \cr & *y = \frac{3}{{\sqrt x }} \to y' = - \frac{3}{{x\sqrt x }}, \cr & y' = 0 \to {\text{ No solution.}} \cr & {\text{There are no relative extrema}} \cr & x{y^2} = 9 \Rightarrow {\text{ Symmetry: }}x{\text{ - axis}} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.