Answer
Graph
Work Step by Step
$$\eqalign{
& y = \frac{{x - 4}}{{x - 3}} \cr
& {\text{Find the }}y{\text{ intercept, let }}x = 0 \cr
& y = \frac{{0 - 4}}{{0 - 3}} \to y = \frac{4}{3},{\text{ }}\left( {0,\frac{4}{3}} \right) \cr
& y{\text{ - intercept }}\left( {0,\frac{4}{3}} \right) \cr
& {\text{Find the }}x{\text{ intercept, let }}y = 0 \cr
& 0 = \frac{{x - 4}}{{x - 3}} \cr
& x = 4 \cr
& x{\text{ - intercept }}\left( {4,0} \right) \cr
& \cr
& *{\text{Find the extrema}} \cr
& {\text{Differentiate}} \cr
& y' = \frac{d}{{dx}}\left[ {\frac{{x - 4}}{{x - 3}}} \right] \cr
& y' = \frac{{\left( {x - 3} \right)\left( 1 \right) - \left( {x - 4} \right)\left( 1 \right)}}{{{{\left( {x - 3} \right)}^2}}} \cr
& y' = \frac{{x - 3 - x + 4}}{{{{\left( {x - 3} \right)}^2}}} \cr
& y' = \frac{1}{{{{\left( {x - 3} \right)}^2}}} \cr
& {\text{Let }}y' = 0 \cr
& \frac{1}{{{{\left( {x - 3} \right)}^2}}} = 0,{\text{ there are no values at which }}y' = 0. \cr
& {\text{No relative extrema}}{\text{.}} \cr
& \cr
& {\text{*Calculate the asymptotes}} \cr
& \frac{{x - 4}}{{x - 3}} \cr
& x - 3 = 0 \to x = 3 \cr
& {\text{Vertical asymptote at }}x = 1 \cr
& \mathop {\lim }\limits_{x \to \infty } \frac{{x - 4}}{{x - 3}} = 1 \cr
& \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 4}}{{x - 3}} = 1 \cr
& {\text{Horizontal asymptote }}y = 1 \cr
& \cr
& {\text{*Symmetry}} \cr
& f\left( { - x} \right) = \frac{{\left( { - x} \right) - 4}}{{\left( { - x} \right) - 3}} \cr
& f\left( { - x} \right) = - \frac{{x + 4}}{{x + 3}} \cr
& {\text{There is no symmetry}}{\text{.}} \cr
& \cr
& {\text{Graph}} \cr} $$