Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 484: 20

Answer

$$\frac{{dy}}{{dx}} = \frac{1}{{2x}} + \frac{1}{{3\left( {x + 1} \right)}} - \csc x\sec x$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {\frac{{\sqrt x \root 3 \of {x + 1} }}{{\sin x\sec x}}} \right) \cr & {\text{Using algebraic properties of the natural logarithm function}} \cr & y = \ln \left( {\sqrt x \root 3 \of {x + 1} } \right) - \ln \left( {\sin x\sec x} \right) \cr & y = \ln \left( {\sqrt x } \right) + \ln \left( {\root 3 \of {x + 1} } \right) - \ln \left( {\frac{{\sin x}}{{\cos x}}} \right) \cr & y = \frac{1}{2}\ln x + \frac{1}{3}\ln \left( {x + 1} \right) - \ln \left( {\tan x} \right) \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{1}{2}\left( {\frac{1}{x}} \right) + \frac{1}{3}\left( {\frac{1}{{x + 1}}} \right) - \frac{{{{\sec }^2}x}}{{\tan x}} \cr & {\text{Simplifying}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{2x}} + \frac{1}{{3\left( {x + 1} \right)}} - \csc x\sec x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.