Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 484: 16

Answer

$$\ln 2$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\theta \to {0^ + }} \left[ {\ln \left( {\sin 2\theta } \right) - \ln \left( {\tan \theta } \right)} \right] \cr & {\text{Use the property of logarithms}} \cr & {\text{ = }}\mathop {\lim }\limits_{\theta \to {0^ + }} \ln \left( {\frac{{\sin 2\theta }}{{\tan \theta }}} \right) \cr & {\text{Use trigonometric identities and simplify}} \cr & {\text{ = }}\mathop {\lim }\limits_{\theta \to {0^ + }} \ln \left( {\frac{{2\sin \theta \cos \theta }}{{\frac{{\sin \theta }}{{\cos \theta }}}}} \right) \cr & {\text{ = }}\mathop {\lim }\limits_{\theta \to {0^ + }} \ln \left( {\frac{{2\sin \theta {{\cos }^2}\theta }}{{\sin \theta }}} \right) \cr & {\text{ = }}\mathop {\lim }\limits_{\theta \to {0^ + }} \ln \left( {2{{\cos }^2}\theta } \right) \cr & {\text{Evaluate the limit}} \cr & = \ln \left( {2{{\cos }^2}0} \right) \cr & = \ln 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.