Answer
$$0$$
Work Step by Step
$$\eqalign{
& \mathop {\lim }\limits_{t \to \pi /{2^ + }} {e^{\tan t}} \cr
& {\text{Evaluate the limit }} \cr
& \mathop {\lim }\limits_{t \to \pi /{2^ + }} {e^{\tan t}} = {e^{\mathop {\lim }\limits_{t \to \pi /{2^ + }} \tan t}} \cr
& \mathop {\lim }\limits_{t \to \pi /{2^ + }} \tan t = \tan \left( {{{\frac{\pi }{2}}^ + }} \right) = - \infty \cr
& {\text{Therefore,}} \cr
& {e^{\mathop {\lim }\limits_{t \to \pi /{2^ + }} \tan t}} = {e^{ - \infty }} = 0 \cr
& {\text{The following graph confirms the result}} \cr} $$