Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 484: 19

Answer

$$\frac{{dy}}{{dx}} = \frac{1}{{x + 1}} + \frac{2}{{x + 2}} - \frac{3}{{x + 3}} - \frac{4}{{x + 4}}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {\frac{{\left( {x + 1} \right){{\left( {x + 2} \right)}^2}}}{{{{\left( {x + 3} \right)}^3}{{\left( {x + 4} \right)}^4}}}} \right) \cr & {\text{Using algebraic properties of the natural logarithm function}} \cr & y = \ln \left( {\left( {x + 1} \right){{\left( {x + 2} \right)}^2}} \right) - \ln \left( {{{\left( {x + 3} \right)}^3}{{\left( {x + 4} \right)}^4}} \right) \cr & y = \ln \left( {x + 1} \right) + \ln {\left( {x + 2} \right)^2} - \ln {\left( {x + 3} \right)^3} - \ln {\left( {x + 4} \right)^4} \cr & y = \ln \left( {x + 1} \right) + 2\ln \left( {x + 2} \right) - 3\ln \left( {x + 3} \right) - 4\ln \left( {x + 4} \right) \cr & {\text{Diffentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{1}{{x + 1}} + \frac{2}{{x + 2}} - \frac{3}{{x + 3}} - \frac{4}{{x + 4}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.