Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 484: 17

Answer

$$\frac{1}{{{e^3}}}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{3}{x}} \right)^{ - x}} \cr & {\text{Evaluating}} \cr & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{3}{x}} \right)^{ - x}} = {1^{ - \infty }} \cr & {\text{This limit has the form }}{1^\infty }{\text{ }} \cr & {\left( {1 + \frac{3}{x}} \right)^{ - x}} = {e^{ - x\ln \left( {1 + \frac{3}{x}} \right)}},{\text{ then}} \cr & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{3}{x}} \right)^{ - x}} = \mathop {\lim }\limits_{x \to + \infty } {e^{ - x\ln \left( {1 + \frac{3}{x}} \right)}} = {e^{ - \mathop {\lim }\limits_{x \to + \infty } x\ln \left( {1 + \frac{3}{x}} \right)}} \cr & {\text{The first step is to evaluate }} \cr & L = - \mathop {\lim }\limits_{x \to + \infty } x\ln \left( {1 + \frac{3}{x}} \right) = - \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln \left( {1 + \frac{3}{x}} \right)}}{{1/x}} = \frac{0}{0} \cr & {\text{Using the L'Hopital's rule}} \cr & L = - \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln \left( {1 + \frac{3}{x}} \right)}}{{1/x}} = - \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{{ - \frac{3}{{{x^2}}}}}{{1 + \frac{3}{x}}}}}{{ - \frac{1}{{{x^2}}}}} = - \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{{\frac{3}{{{x^2}}}}}{{\frac{{x + 3}}{x}}}}}{{\frac{1}{{{x^2}}}}} = - \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{{3x}}{{{x^2}\left( {x + 3} \right)}}}}{{\frac{1}{{{x^2}}}}} \cr & = - \mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^3}}}{{{x^2}\left( {x + 3} \right)}} = - \mathop {\lim }\limits_{x \to + \infty } \frac{{3x}}{{x + 3}} \cr & - \mathop {\lim }\limits_{x \to + \infty } \frac{{3x}}{{x + 3}} = - \mathop {\lim }\limits_{x \to + \infty } \frac{3}{{1 + 3/x}} = - 3 \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{3}{x}} \right)^{ - x}} = \mathop {\lim }\limits_{x \to + \infty } {e^{ - x\ln \left( {1 + \frac{3}{x}} \right)}} = {e^{ - 3}} \cr & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{3}{x}} \right)^{ - x}} = \frac{1}{{{e^3}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.