Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.5 Parametric Equations Of Lines - Exercises Set 11.5 - Page 811: 31

Answer

The lines are skew.

Work Step by Step

(a) The line in 2d space that passes through the point $P_{0}\left(x_{0}, y_{0}\right)$ and is parallel to the non-zero vector $\mathbf{v}=\langle a, b\rangle=a \mathbf{i}+b \mathbf{j}$ has parametric equations \[ b t+y_{0}=y, \quad a t+x_{0}=x \] (b) The line in 3d space that passes through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and that is parallel to the non-zero vector $\mathbf{v}=\langle a, b, c\rangle=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ has the parametric equations \[ c t+z_{0}=z, \quad b t+y_{0}=y, \quad at+x_{0}=x \] The vector equations of these lines can be written as: \[ \begin{aligned} \langle x, y, z\rangle &=\left\langle x_{0}+a t, y_{0}+b t, z_{0}+c t\right\rangle \\ \langle x, y\rangle &=\left\langle x_{0}+a t, y_{0}+b t\right\rangle \end{aligned} \] or \[ \begin{aligned} \langle x, y, z\rangle &=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle \\ \langle x, y\rangle &=\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle \end{aligned} \] Since the line: \[ -3 t+5=z, \quad t+3=y, \quad 7 t+1=x \] is parallel to $\vec{v}_{1}=\langle 7,1,-3\rangle$ and the line: \[ 2 t+7=z, -3 t+5=y, \quad -t+4=x \] is parallel to $\vec{v}_{2}=\langle-1,-3,2\rangle,$ and $\vec{v}_{1} \times \vec{v}_{2} \neq 0,$ these lines are skew. We notice that if $\vec{v}_{1} / / \vec{v}_{2},$ then $L_{1} / / L_{2}$ and $\vec{v}_{1} \times \vec{v}_{2}=0 .$ In this case \[ \vec{v}_{1} \times \vec{v}_{2}=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 7 & 1 & -3 \\ -1 & -3 & 2 \end{array}\right|=(2-9) \hat{i}+(14-3) \hat{j}+(-21+1) \hat{k} \neq 0 \] So, the given lines are skew.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.