Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.5 Parametric Equations Of Lines - Exercises Set 11.5 - Page 811: 27

Answer

\[ Q(0,4,-2) \text { and } P(4,0,6) \]

Work Step by Step

(a) The line in 2d space that passes through the point $P_{0}\left(x_{0}, y_{0}\right)$ and that is parallel to the non-zero vector $\mathbf{v}=\langle a, b\rangle=a \mathbf{i}+b \mathbf{j}$ has parametric equations \[ b t+y_{0}=y, \quad a t+x_{0}=x \] (b) The line in 3d space that passes through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and that is parallel to the non-zero vector $\mathbf{v}=\langle a, b, c\rangle=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ has parametric equations \[ c t+z_{0}=z, \quad b t+y_{0}=y, \quad a t+x_{0}=x \] The vector equations of these lines can be written as: \[ \begin{aligned} &\left\langle x_{0}+a t, y_{0}+b t\right\rangle=\langle x, y\rangle \\ &\left\langle x_{0}+a t, y_{0}+b t, z_{0}+c t\right\rangle=\langle x, y, z\rangle \end{aligned} \] or \[ \begin{aligned} &\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle =\langle x, y\rangle \\ &\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle=\langle x, y, z\rangle \end{aligned} \] It's given the parametric equation of the line is: \[ 2 t=z, \quad -t+3=y, \quad t+1=x \] Replace this in our cylinder equation to get: \[ \begin{aligned} 16=y^{2}+x^{2} & \Rightarrow16=(-t+3)^{2}+(t+1)^{2}\\ & \Rightarrow 16=t^{2}-6 t+9 +t^{2}+2 t+1\\ & \Rightarrow 0=-4 t-6+2 t^{2} \\ & \Rightarrow 0=2\left(-2 t-3+t^{2}\right)\\ & \Rightarrow 0=(1+t)(-3+t) \\ & \Rightarrow -1=t \quad \text { or } \quad 3=t \end{aligned} \] For these two values ​​of the parameter, we have that: \[ \begin{array}{l} z_{2}=2(-1)=-2 , y_{2}=3-(-1)=4, \quad x_{2}=1-1=0\\ z_{1}=2(3)=6 , y_{1}=3-3=0, \quad x_{1}=1+3=4 \end{array} \] So, the line intersects the cylinder at: \[ Q(0,4,-2) \text { and } P(4,0,6) \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.