Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Review - Exercises - Page 270: 50

Answer

$y' = \frac{2(x+1)(x+4)}{(x^2-4)(2x+5)}$

Work Step by Step

Let $f(x) = \frac{x^2-4}{2x+5}$ $f'(x) = \frac{2x(2x+5)-2(x^2-4)}{(2x+5)^2}$ $f'(x) = \frac{4x^2+10x-2x^2+8}{(2x+5)^2}$ $f'(x) = \frac{2x^2+10x+8}{(2x+5)^2}$ $f'(x) = \frac{2(x+1)(x+4)}{(2x+5)^2}$ If $y = ln\vert f(x) \vert,~~$ then $y' = \frac{1}{f(x)}\cdot f'(x)$ $y = ln\vert \frac{x^2-4}{2x+5} \vert$ Then: $y' = \frac{1}{f(x)}\cdot f'(x) $ $y' = \frac{1}{\frac{x^2-4}{2x+5}}\cdot \frac{2(x+1)(x+4)}{(2x+5)^2}$ $y' = \frac{2x+5}{x^2-4}\cdot \frac{2(x+1)(x+4)}{(2x+5)^2}$ $y' = \frac{1}{x^2-4}\cdot \frac{2(x+1)(x+4)}{(2x+5)}$ $y' = \frac{2(x+1)(x+4)}{(x^2-4)(2x+5)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.