Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Review - Exercises - Page 270: 37

Answer

$y'=\dfrac{3x^{2}(\sec^{2}\sqrt{1+x^{3}})\cos(\tan\sqrt{1+x^{3}})}{2\sqrt{1+x^{3}}}$

Work Step by Step

$y=\sin(\tan\sqrt{1+x^{3}})$ Start the differentiation process by using the chain rule: $y'=(\tan\sqrt{1+x^{3}})'\cos(\tan\sqrt{1+x^{3}})=...$ Use the chain rule one more time to evaluate the indicated derivative: $...=(\sqrt{1+x^{3}})'(\sec^{2}\sqrt{1+x^{3}})\cos(\tan\sqrt{1+x^{3}})=...$ Rewrite $\sqrt{1+x^{3}}$ using a rational exponent instead of the square root: $...=[(1+x^{3})^{1/2}]'(\sec^{2}\sqrt{1+x^{3}})\cos(\tan\sqrt{1+x^{3}})=...$ Apply the chain rule one more time to evaluate the indicated derivative: $...=\dfrac{1}{2}(1+x^{3})^{-1/2}(1+x^{3})'(\sec^{2}\sqrt{1+x^{3}})\cos(\tan\sqrt{1+x^{3}})=...$ $...=\dfrac{1}{2}(1+x^{3})^{-1/2}(3x^{2})(\sec^{2}\sqrt{1+x^{3}})\cos(\tan\sqrt{1+x^{3}})=...$ Change the sign of the negative exponent by moving its corresponding factor to the denominator: $...=\dfrac{3x^{2}(\sec^{2}\sqrt{1+x^{3}})\cos(\tan\sqrt{1+x^{3}})}{2(1+x^{3})^{1/2}}=...$ $...=\dfrac{3x^{2}(\sec^{2}\sqrt{1+x^{3}})\cos(\tan\sqrt{1+x^{3}})}{2\sqrt{1+x^{3}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.