Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Review - Exercises - Page 270: 40

Answer

$\frac{{dy}}{{d\theta }} = - 1$

Work Step by Step

$$\eqalign{ & y = {\sin ^{ - 1}}\left( {\cos \theta } \right),{\text{ 0}} < \theta < \pi \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {{{\sin }^{ - 1}}\left( {\cos \theta } \right)} \right] \cr & {\text{Use }}\frac{d}{{d\theta }}\left[ {{{\sin }^{ - 1}}u} \right] = \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{d\theta }},{\text{ let }}u = \cos \theta {\text{ }}\left( {{\text{see page 223}}} \right) \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sqrt {1 - {{\left( {\cos \theta } \right)}^2}} }}\frac{d}{{d\theta }}\left[ {\cos \theta } \right] \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sqrt {1 - {{\cos }^2}\theta } }}\left( { - \sin \theta } \right) \cr & {\text{Multiply and simplify}} \cr & \frac{{dy}}{{d\theta }} = - \frac{{\sin \theta }}{{\sqrt {1 - {{\cos }^2}\theta } }} \cr & {\text{Use the identity }}{\cos ^2}\theta + {\sin ^2}\theta = 1 \cr & \frac{{dy}}{{d\theta }} = - \frac{{\sin \theta }}{{\sqrt {{{\sin }^2}\theta } }} \cr & \frac{{dy}}{{d\theta }} = - \frac{{\sin \theta }}{{\left| {\sin \theta } \right|}},{\text{ 0}} < \theta < \pi {\text{ }} \to \sin \theta > 0 \cr & \frac{{dy}}{{d\theta }} = - \frac{{\sin \theta }}{{\sin \theta }} \cr & \frac{{dy}}{{d\theta }} = - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.