Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Review - Exercises - Page 270: 38

Answer

$\frac{{dy}}{{dx}} = \frac{1}{{\sqrt {{x^2} - 1} }} + {\sec ^{ - 1}}x$

Work Step by Step

$$\eqalign{ & y = x{\sec ^{ - 1}}x \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {x{{\sec }^{ - 1}}x} \right] \cr & {\text{Use the product rule for derivatives}} \cr & \frac{{dy}}{{dx}} = x\frac{d}{{dx}}\left[ {{{\sec }^{ - 1}}x} \right] + {\sec ^{ - 1}}x\frac{d}{{dx}}\left[ x \right] \cr & {\text{Where }}\frac{d}{{dx}}\left[ {{{\sec }^{ - 1}}x} \right] = \frac{1}{{x\sqrt {{x^2} - 1} }}{\text{ }},{\text{ so}} \cr & \frac{{dy}}{{dx}} = x\left( {\frac{1}{{x\sqrt {{x^2} - 1} }}} \right) + {\sec ^{ - 1}}x\left( 1 \right) \cr & {\text{Multiply and simplify}} \cr & \frac{{dy}}{{dx}} = \frac{x}{{x\sqrt {{x^2} - 1} }} + {\sec ^{ - 1}}x \cr & \frac{{dy}}{{dx}} = \frac{1}{{\sqrt {{x^2} - 1} }} + {\sec ^{ - 1}}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.