Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.2 - The Limit of a Function - 2.2 Exercises - Page 93: 38

Answer

$ - \infty $

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to {3^ - }} \frac{{{x^2} + 4x}}{{{x^2} - 2x - 3}} \cr & {\text{Finding the one sided limits}} \cr & \cr & {\text{* }}x \to {3^ - }{\text{ taking }}x = 2.9 \cr & \approx \frac{{{{\left( {2.9} \right)}^2} + 4\left( {2.9} \right)}}{{{{\left( {2.9} \right)}^2} - 2\left( {2.9} \right) - 3}} \cr & \approx - 51.3 \cr & \cr & {\text{* }}x \to {3^ - }{\text{ taking }}x = 2.99 \cr & \approx \frac{{{{\left( {2.99} \right)}^2} + 4\left( {2.99} \right)}}{{{{\left( {2.99} \right)}^2} - 2\left( {2.99} \right) - 3}} \cr & \approx - 523.8 \cr & \cr & {\text{* }}x \to {3^ - }{\text{ taking }}x = 2.999 \cr & \approx \frac{{{{\left( {2.999} \right)}^2} + 4\left( {2.999} \right)}}{{{{\left( {2.999} \right)}^2} - 2\left( {2.999} \right) - 3}} \cr & \approx - 5248.81 \cr & \cr & {\text{* }}x \to {3^ - }{\text{ taking }}x = 2.9999 \cr & \approx \frac{{{{\left( {2.9999} \right)}^2} + 4\left( {2.9999} \right)}}{{{{\left( {2.9999} \right)}^2} - 2\left( {2.9999} \right) - 3}} \cr & \approx - 52498.8 \cr & \cr & {\text{When }}x \to {3^ - }{\text{ }}\mathop {\lim }\limits_{x \to {3^ - }} \frac{{{x^2} + 4x}}{{{x^2} - 2x - 3}}{\text{ tends to }} - \infty \cr & \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to {3^ - }} \frac{{{x^2} + 4x}}{{{x^2} - 2x - 3}} = - \infty \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.