Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.2 - The Limit of a Function - 2.2 Exercises - Page 93: 33

Answer

$ - \infty $

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to {1^ + }} \ln \left( {\sqrt x - 1} \right) \cr & {\text{Finding the one sided limit}} \cr & \cr & {\text{* }}x \to {1^ + }{\text{ taking }}x = 1.001 \cr & \approx \ln \left( {\sqrt {1.001} - 1} \right) \cr & \approx - 7.6 \cr & \cr & {\text{* }}x \to {1^ + }{\text{ taking }}x = 1.0001 \cr & \approx \ln \left( {\sqrt {1.0001} - 1} \right) \cr & \approx - 9.9 \cr & \cr & {\text{* }}x \to {1^ + }{\text{ taking }}x = 1.00001 \cr & \approx \ln \left( {\sqrt {1.00001} - 1} \right) \cr & \approx - 12.2 \cr & \cr & {\text{* }}x \to {1^ + }{\text{ taking }}x = 1.0000001 \cr & \approx \ln \left( {\sqrt {1.0000001} - 1} \right) \cr & \approx - 16.2 \cr & \cr & {\text{When }}x \to {1^ + }{\text{ }}\mathop {\lim }\limits_{x \to {1^ + }} \ln \left( {\sqrt x - 1} \right){\text{ tends to }} - \infty \cr & \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to {1^ + }} \ln \left( {\sqrt x - 1} \right) = - \infty \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.