Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.2 - The Limit of a Function - 2.2 Exercises - Page 93: 24

Answer

$\lim\limits_{p \to -1} f(x) = 0.6$

Work Step by Step

$\lim\limits_{p \to -1} \frac{1+p^{9}}{1+p^{15}}$ Chose numbers close to -1. $x | f(x)$ $-0.95 | 0.68$ $-0.99 | 0.62$ $-0.9999 | 0.60$ $-0.99999 | 0.60$ $-0.9999999 | 0.60$ $\lim\limits_{p \to -1^{-}} \frac{1+p^{9}}{1+p^{15}} = 0.60$ $x | f(x)$ $-1.5| 0.086$ $-1.1| 0.43$ $-1.01| 0.58$ $-1.001| 0.60$ $-1.00001| 0.60$ $\lim\limits_{p \to -1^{+}} \frac{1+p^{9}}{1+p^{15}} = 0.60$ By the table of numbers it appears that $\lim\limits_{p \to -1^{-}} f(x) = 0.60$ and $\lim\limits_{p \to -1^{+}} f(x) = 0.60$. So $\lim\limits_{p \to -1} f(x) = 0.60$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.