Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.2 - The Limit of a Function - 2.2 Exercises - Page 93: 37

Answer

$\infty $

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}} \cr & {\text{Evaluate the limit by direct substitution}} \cr & \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}} = \frac{{{{\left( 1 \right)}^2} + 2\left( 1 \right)}}{{{{\left( 1 \right)}^2} - 2\left( 1 \right) + 1}} = \frac{3}{0}{\text{ }} \cr & {\text{Finding the one sided limits }} \cr & \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}}{\text{ and }}\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}} \cr & \cr & *\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}},{\text{ taking }}x = 0.999 \cr & \approx \frac{{{{\left( {0.999} \right)}^2} + 2\left( {0.999} \right)}}{{{{\left( {0.999} \right)}^2} - 2\left( {0.999} \right) + 1}} \approx 2996001,{\text{ then}} \cr & \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}} = + \infty \cr & \cr & *\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}},{\text{ taking }}x = 1.001 \cr & \approx \frac{{{{\left( {1.001} \right)}^2} + 2\left( {1.001} \right)}}{{{{\left( {1.001} \right)}^2} - 2\left( {1.001} \right) + 1}} \approx 3004001,{\text{ then}} \cr & \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}} = + \infty \cr & \cr & \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}} = \infty ,{\text{ then}} \cr & \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x}}{{{x^2} - 2x + 1}} = \infty \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.