Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.2 - The Limit of a Function - 2.2 Exercises - Page 93: 31

Answer

$ + \infty $

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 2} \frac{{{x^2}}}{{{{\left( {x - 2} \right)}^2}}} \cr & {\text{Evaluate the limit by direct substitution}} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{{x^2}}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( 2 \right)}^2}}}{{{{\left( {2 - 2} \right)}^2}}} = \frac{4}{0}{\text{ }} \cr & {\text{Finding the one sided limits }}\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2}}}{{{{\left( {x - 2} \right)}^2}}}{\text{ and }}\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2}}}{{{{\left( {x - 2} \right)}^2}}} \cr & \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2}}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( {{2^ - }} \right)}^2}}}{{{{\left( {{2^ - } - 2} \right)}^2}}} = \frac{4}{{{{\left( {{0^ - }} \right)}^2}}} = \frac{4}{{{0^ + }}} = + \infty \cr & and \cr & \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2}}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( {{2^ + }} \right)}^2}}}{{{{\left( {{2^ + } - 2} \right)}^2}}} = \frac{4}{{{{\left( {{0^ + }} \right)}^2}}} = \frac{4}{{{0^ + }}} = + \infty \cr & \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2}}}{{{{\left( {x - 2} \right)}^2}}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2}}}{{{{\left( {x - 2} \right)}^2}}},{\text{ then}} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{{x^2}}}{{{{\left( {x - 2} \right)}^2}}} = + \infty \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.