Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Review - True-False Quiz - Page 167: 7

Answer

The statement is false.

Work Step by Step

This statement is false. Here's an example to disprove: $\lim\limits_{x\to5}f(x)=\lim\limits_{x\to5}(x^2-5x)=5^2-5\times5=0$ $\lim\limits_{x\to5}g(x)=\lim\limits_{x\to5}(x-5)=5-5=0$ However, $$\lim\limits_{x\to5}\frac{x^2-5x}{x-5}$$$$=\lim\limits_{x\to5}\frac{x(x-5)}{x-5}$$$$=\lim\limits_{x\to5}x$$$$=5$$ That means $\lim\limits_{x\to5}\frac{x^2-5x}{x-5}$ does exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.