Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Review - True-False Quiz - Page 167: 26

Answer

False

Work Step by Step

The statement is false. Consider $f(x)=x$ and $a=0$. $\lim\limits_{x \to 0^-}\frac{|f(x)|-|f(0)|}{x-0}=\lim\limits_{x \to 0^-}\frac{|x|-|0|}{x-0}=\lim\limits_{x \to 0^-}\frac{-x-0}{x}=-1$ but $\lim\limits_{x \to 0^+}\frac{|f(x)|-|f(0)|}{x-0}=\lim\limits_{x \to 0^+}\frac{|x|-|0|}{x-0}=\lim\limits_{x \to 0^+}\frac{x-0}{x}=1$ $f$ is differentiable at $0$ but $|f(x)|=|x|$ is not differentiable at $0$ because $\lim\limits_{x \to 0^-}\frac{|f(x)|-|f(0)|}{x-0}\neq \lim\limits_{x \to 0^+}\frac{|f(x)|-|f(0)|}{x-0}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.