Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Review - True-False Quiz - Page 167: 1

Answer

The mentioned statement is false.

Work Step by Step

$\lim\limits_{x \to 4}\Big(\frac{2x}{x-4}-\frac{8}{x-4}\Big)=\lim\limits_{x \to 4}\frac{2x}{x-4}-\lim\limits_{x \to 4}\frac{8}{x-4}$ We see that as $x\to 4$, $2x\to8$ and $(x-4)\to0$ So, $(\frac{2x}{x-4})\to+\infty$ and $(\frac{8}{x-4})\to+\infty$ Which means, both $\lim\limits_{x \to 4}\frac{2x}{x-4}$ and $\lim\limits_{x \to 4}\frac{8}{x-4}$ do not exist. However, the difference law $$\lim\limits_{x \to a}[f(x)-g(x)]=\lim\limits_{x \to a}f(x)-\lim\limits_{x \to a}g(x)$$can only be applied on the assumption that both $\lim\limits_{x \to a} f(x)$ and $\lim\limits_{x \to a}g(x)$ exist. Therefore, the mentioned statement is false.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.