Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.3 - Multiplying and Simplifying Radical Expressions - Exercise Set - Page 533: 117

Answer

$g(x)= \sqrt[3] {4x^2}$.

Work Step by Step

The given function is $f(x)=\sqrt[3] {2x}$ and $(fg)(x)=2x$. We can write $(fg)(x)=f(x)\cdot g(x)$. Substitute all functions. $\Rightarrow 2x=(\sqrt[3] {2x})\cdot g(x)$ Rewrite as an exponential expression. $\Rightarrow 2x=(2x)^{\frac{1}{3}}\cdot g(x)$ Raise each factor in parentheses to the $\frac{1}{3}$ power. $\Rightarrow 2x=(2^{\frac{1}{3}}x^{\frac{1}{3}})\cdot g(x)$ Divide both sides by $(2^{\frac{1}{3}}x^{\frac{1}{3}})$. $\Rightarrow \frac{2x}{(2^{\frac{1}{3}}x^{\frac{1}{3}})}=\frac{(2^{\frac{1}{3}}x^{\frac{1}{3}})\cdot g(x)}{(2^{\frac{1}{3}}x^{\frac{1}{3}})}$ To divide with the same base, subtract exponents. $\Rightarrow 2^{1-\frac{1}{3}}x^{1-\frac{1}{3}}= g(x)$ Simplify. $\Rightarrow 2^{\frac{3}{3}-\frac{1}{3}}x^{\frac{3}{3}-\frac{1}{3}}= g(x)$ $\Rightarrow 2^{\frac{3-1}{3}}x^{\frac{3-1}{3}}= g(x)$ $\Rightarrow 2^{\frac{2}{3}}x^{\frac{2}{3}}= g(x)$ Rewrite in radical notation. $\Rightarrow \sqrt[3] {2^2x^2}= g(x)$ $\Rightarrow \sqrt[3] {4x^2}= g(x)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.