Answer
See the explanation below.
Work Step by Step
The radical $3\sqrt [3] {x}$ can be re-written in the power notation as :
Since, $\sqrt{ab}=\sqrt a \sqrt b$
Thus, $\sqrt[n]{ab}=\sqrt[n] a \sqrt[n] b$
Here, $n$ refers as index.
$ 3\sqrt [3] {x} =\sqrt[3] {3^3} \sqrt [3] x$
or, $= \sqrt[3] {27x}$
Hence, In order to triple the cube root, the number should be be multiplied by $27$.