Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.6 - Rational Equations - Exercise Set - Page 463: 50

Answer

$\{-5,-1\}$.

Work Step by Step

Replace $x$ with $a$ in the given functions. $f(a)=\frac{6}{a+3},g(a)=\frac{2a}{a-3}$ and $h(a)=-\frac{28}{a^2-9}$ The given expression is $\Rightarrow (f+g)(a)=h(a)$ Or we can write using the sum of functions formula. $\Rightarrow f(a)+g(a)=h(a)$ Substitute all fucntions. $\Rightarrow \frac{6}{a+3}+\frac{2a}{a-3}=-\frac{28}{a^2-9}$.....(1) In order to clear fractions we determine the Least Common Denominator (LCD) of all denominators. Factor the denominator on the right hand side. Factor $a^2-9$ $\Rightarrow a^2-3^2$ Use the special formula $A^2-B^2=(A+B)(A-B)$. $\Rightarrow (a+3)(a-3)$ Back substitute into the equation. $\Rightarrow \frac{6}{a+3}+\frac{2a}{a-3}=-\frac{28}{(a+3)(a-3)}$ Multiply both sides by the LCD $(a+3)(a-3)$ $\Rightarrow (a+3)(a-3)\left (\frac{6}{a+3}+\frac{2a}{a-3}\right )=(a+3)(a-3)\left(-\frac{28}{(a+3)(a-3)}\right )$ Use the distributive property. $\Rightarrow (a+3)(a-3)\left (\frac{6}{a+3}\right )+(a+3)(a-3)\left (\frac{2a}{a-3}\right )=(a+3)(a-3)\left(-\frac{28}{(a+3)(a-3)}\right )$ Cancel common factors. $\Rightarrow 6(a-3)+2a(a+3)=-28$ Use the distributive property. $\Rightarrow 6a-18+2a^2+6a=-28$ Add like terms. $\Rightarrow 2a^2+12a-18=-28$ Add $28$ to both sides. $\Rightarrow 2a^2+12a-18+28=-28+28$ Simplify. $\Rightarrow 2a^2+12a+10=0$ Factor out $2$: $\Rightarrow 2(a^2+6a+5)=0$ Divide both sides by $2$: $\Rightarrow a^2+6a+5=0$ Rewrite the middle term $6a$ as $5a+a$. $\Rightarrow a^2+5a+a+5=0$ Group terms. $\Rightarrow (a^2+5a)+(a+5)=0$ Factor each group. $\Rightarrow a(a+5)+(a+5)=0$ Factor out $(a+5)$. $\Rightarrow (a+5)(a+1)=0$ Set each factor equal zero. $\Rightarrow a+5=0$ or $a+1=0$ Isolate $a$. $\Rightarrow a=-5$ or $a=-1$ The solution set is $\{-5,-1\}$. Note: We have to verify if the solutions we got check the equation (1). The equation is defined for all real values of $a$ except the zeros of the denominators, which are $-3$ and $3$. Since the solutions we got are $-5$ and $-1$, therefore different than $-3$ and $3$, they are correct,
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.