Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.6 - Rational Equations - Exercise Set - Page 463: 31

Answer

Solution set = $\displaystyle \{-\frac{4}{3}\}$.

Work Step by Step

Factor each denominator $(x^{2}+bx+c$ is factored by searching for factors of c whose sum is b). $x^{2}+3x-10$ = $\left[\begin{array}{lll} factors & of & -10\\ +5, & -2, & 5-2=3 \end{array}\right]=(x-2)(x+5)$ $x^{2}+9x+20$ = $\left[\begin{array}{lll} factors & of & 20\\ +5, & +4, & 5+4=9 \end{array}\right]=(x+4)(x+5)$ $x^{2}+2x-8$ = $\left[\begin{array}{lll} factors & of & -8\\ -2, & +4, & -2+4=2 \end{array}\right]=(x+4)(x-2)$ Rewrite the equation $\displaystyle \frac{4}{(x-2)(x+5)}+\frac{1}{(x+4)(x+5)}=\frac{2}{(x+4)(x-2)}$ First, we exclude those values of x that yield a zero in any of the denominators. $x\not\in\{-5,-4,2 \}\qquad (*)$ Multiply the equation with the LCD=$(x-2)(x+5)(x+4)$ $ 4(x+4)+1(x-2)=2(x+5)\qquad$ ... simplify (distribute) $4x+16+x-2=2x+10$ $ 5x+14=2x+10 \qquad$ ... add $-14-2x$ to both sides $3x=-4$ $ x=-\displaystyle \frac{4}{3}\qquad$ ...Checking (*), this is a valid solution Solution set = $\displaystyle \{-\frac{4}{3}\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.