Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.6 - Rational Equations - Exercise Set - Page 463: 37

Answer

Solution set: $\displaystyle \{-3,-\frac{4}{3}\}$

Work Step by Step

$g(a)=20$ $\displaystyle \frac{5}{a+2}+\frac{25}{a^{2}+4a+4}=20$ ... recognize a perfect square: $a^{2}+4a+4=a^{2}+2\cdot 2\cdot a+2^{2}$ $\displaystyle \frac{5}{a+2}+\frac{25}{(a+2)^{2}}=20$ ...Multiply the equation with the LCD=$(a+2)^{2}$ $ 5(a+2)+25=20(a+2)^{2}\qquad$ ... simplify (distribute) $5a+10+25=20(a^{2}+4a+4)$ $ 5a+35=20a^{2}+80a+80\qquad$ ... divide all with 5 $ a+7=4a^{2}+16a+16\qquad$ ... add $-a-7$ $0=4a^{2}+15a+9$ We want to factor the RHS. Search for factors of ac whose sum is b... ... we find $12$ and $3$, factors of $4\times 9=36$ whose sum is $15$ $ 0=4a^{2}+12a+3a+9\qquad$ ... factor in pairs $0=4a(a+3)+3(a+3)$ $0=(a+3)(4a+3)$ By the zero product principle, $a\displaystyle \in\{-3,-\frac{4}{3}\}, $ ... both values satisfy (*). Solution set: $\displaystyle \{-3,-\frac{4}{3}\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.