Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.6 - Rational Equations - Exercise Set - Page 463: 45

Answer

$\displaystyle \frac{-2(x-4)}{x^{3}-8}$ or $\displaystyle \frac{-2(x-4)}{(x-2)(x^{2}+2x+4)}$

Work Step by Step

$x^{3}-8$ is a difference of cubes, $x^{3}-2^{3}=(x-2)(x^{2}+2x+4)$ $x^{2}+2x+4$ has no real zeros as $b^{2}-4ac=4-8$ ... is negative. LCD = $(x-2)(x^{2}+2x+4)$ Exclude solutions which yield 0 in denominators: $x\not\in\{2\}\qquad (*)$ Write all fractions with the LCD, $\displaystyle \frac{1}{x^{3}-8}+\frac{3}{x^{3}-8}-\frac{2}{x^{2}+2x+4}\cdot\frac{x-2}{x-2}$ $=\displaystyle \frac{1+3-2(x-2)}{x^{3}-8}$ $=\displaystyle \frac{4-2x+4}{x^{3}-8}$ $=\displaystyle \frac{8-2x}{x^{3}-8}$ $=\displaystyle \frac{-2(x-4)}{x^{3}-8}$ or $\displaystyle \frac{-2(x-4)}{(x-2)(x^{2}+2x+4)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.