Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.6 - Rational Equations - Exercise Set - Page 463: 49

Answer

$\{1,7\}$.

Work Step by Step

Replace $x$ with $a$ in the given functiions: $f(a)=\frac{5}{a-4},g(a)=\frac{3}{a-3}$ and $h(a)=\frac{a^2-20}{a^2-7a+12}$ The given expression is $\Rightarrow (f+g)(a)=h(a)$ Or we can write using the formula for the sum of two functions: $\Rightarrow f(a)+g(a)=h(a)$ Substitute all fucntions. $\Rightarrow \frac{5}{a-4}+\frac{3}{a-3}=\frac{a^2-20}{a^2-7a+12}$ In order to clear fractions we determine the Least Common Denominator (LCD) of all denominators. Factor the denominator on the right hand side. Factor $a^2-7a+12$ Rewrite the middle term $-7a$ as $-4a-3a$. $\Rightarrow a^2-4a-3a+12$ Group terms. $\Rightarrow (a^2-4a)+(-3a+12)$ Factor each group. $\Rightarrow a(a-4)-3(a-4)$ Factor out $(a-4)$. $\Rightarrow (a-4)(a-3)$ Back substitute into the equation. $\Rightarrow \frac{5}{a-4}+\frac{3}{a-3}=\frac{a^2-20}{(a-4)(a-3)}$....(1) Multiply both sides by the LCD $(a-4)(a-3)$ $\Rightarrow (a-4)(a-3)\left (\frac{5}{a-4}+\frac{3}{a-3}\right )=(a-4)(a-3)\left(\frac{a^2-20}{(a-4)(a-3)}\right )$ Use the distributive property. $\Rightarrow (a-4)(a-3)\left (\frac{5}{a-4}\right )+(a-4)(a-3)\left (\frac{3}{a-3}\right )=(a-4)(a-3)\left(\frac{a^2-20}{(a-4)(a-3)}\right )$ Cancel common terms. $\Rightarrow 5(a-3)+3(a-4)=a^2-20$ Use distributive property. $\Rightarrow 5a-15+3a-12=a^2-20$ Add like terms. $\Rightarrow 8a-27=a^2-20$ Add $-8a+27$ to both sides. $\Rightarrow 8a-27-8a+27=a^2-20-8x+27$ Simplify. $\Rightarrow 0=a^2-8a+7$ Or we can write. $\Rightarrow a^2-8a+7=0$ Rewrite the middle term $-8a$ as $-7a-1a$. $\Rightarrow a^2-7a-1a+7=0$ Group terms. $\Rightarrow (a^2-7a)+(-1a+7)=0$ Factor each group. $\Rightarrow a(a-7)-1(a-7)=0$ Factor out $(a-7)$. $\Rightarrow (a-7)(a-1)=0$ Set each factor equal zero. $\Rightarrow a-7=0$ or $a-1=0$ Isolate $a$. $\Rightarrow a=7$ or $a=1$ The solution set is $\{1,7\}$. Note: We have to check if the values of $a$ that we got check the equation. From (1) we find that the equation is defined for all real values of $a$ except those for which denominators are zero, therefore for all real $a$ except $3$ and $4$. Since we got the values $1$ and $7$ for $a$, which are different from $3$ and $4$, it means they are correct.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.