Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 4 - Section 4.3 - Equations and Inequalities Involving Absolute Value - Exercise Set - Page 284: 61

Answer

$(-\infty,-3)\cup(12,\infty)$. The graph is shown below.

Work Step by Step

The given expression is $\Rightarrow \left | 3-\frac{2x}{3}\right |\gt5$ Rewrite the inequality without absolute value bars. $\Rightarrow 3-\frac{2x}{3}\lt-5$ or $3-\frac{2x}{3}\gt5$ Solve each inequality separately. Subtract $3$ from all parts. $\Rightarrow 3-\frac{2x}{3}-3\lt-5-3$ or $3-\frac{2x}{3}-3\gt5-3$ Simplify $\Rightarrow -\frac{2x}{3}\lt-8$ or $-\frac{2x}{3}\gt2$ Multiply all parts by $-3$ and change the sense of the inequality. $\Rightarrow -\frac{2x}{3}(-3)\gt-8(-3)$ or $-\frac{2x}{3}(-3)\lt2(-3)$ Simplify. $\Rightarrow 2x\gt24$ or $2x\lt-6$ Divide all parts by $2$. $\Rightarrow \frac{2x}{2}\gt\frac{24}{2}$ or $\frac{2x}{2}\lt\frac{-6}{2}$ Simplify. $\Rightarrow x\gt12$ or $x\lt-3$ The solution set is less than $-3$ or greater than $12$. The interval notation is $(-\infty,-3)\cup(12,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.