Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 4 - Section 4.3 - Equations and Inequalities Involving Absolute Value - Exercise Set - Page 284: 60

Answer

$(-\infty,-2]\cup[4,\infty)$. The graph is shown below.

Work Step by Step

The given expression is $\Rightarrow \left | \frac{3x-3}{9}\right |\geq1$ Rewrite the inequality without absolute value bars. $\Rightarrow \frac{3x-3}{9}\leq-1$ or $\frac{3x-3}{9}\geq1$ Solve each inequality separately. Multiply all parts by $9$. $\Rightarrow \frac{3x-3}{9}(9)\leq-1(9)$ or $\frac{3x-3}{9}(9)\geq1(9)$ Simplify. $\Rightarrow 3x-3\leq-9$ or $3x-3\geq9$ Add $3$ to all parts. $\Rightarrow 3x-3+3\leq-9+3$ or $3x-3+3\geq9+3$ Simplify $\Rightarrow 3x\leq-6$ or $3x\geq12$ Divide all parts by $3$. $\Rightarrow \frac{3x}{3}\leq\frac{-6}{3}$ or $\frac{3x}{3}\geq\frac{12}{3}$ Simplify. $\Rightarrow x\leq-2$ or $x\geq4$ The solution set is less than or equal to $-2$ or greater than or equal to $4$. The interval notation is $(-\infty,-2]\cup[4,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.