Answer
$$2^{-2} + \frac{1}{2}x^{0} =\frac{3}{4}$$
Work Step by Step
$$2^{-2} + \frac{1}{2}x^{0}$$
Recall the negative exponent rule: $a^{−n}=\frac{1}{a^{n}}$ and $\frac{1}{a^{-n}} = a^{n}$ and the zero exponent rule: $b^{0}=1$
Thus, $$2^{-2} + \frac{1}{2}x^{0}$$ can be simplified as
$$\frac{1}{2^{2}} + \frac{1}{2}$$ $$\frac{1}{4} + \frac{1}{2}$$
Find the least common multiple (LCM) of the factors $4$ and $2$:
$4: 2 \times 2$
$2: 2$
Adjust the fractions using the LCM:
$$\frac{1}{4} + \frac{1}{2}$$ $$=\frac{1}{4} + \frac{2}{4}$$ $$=\frac{3}{4}$$