Answer
$h \approx ±3.50$
Work Step by Step
1. Power equation
For example:
$7^{x} + 3 = 0$ is an exponential equation. (The variable is the exponent.)
$x^{7} + 3 =0 $ is a power equation. (The variable is raised to the power of a number.)
2. Solve
$\frac{23.5h^{4}-75}{56} = 61.63$
$23.5h^{4} - 75 = 3451.28$
$23.5h^{4} = 3451.28 + 75$
$23.5h^{4} = 3526.28$
$h^{4} = 150.0544...$
$h = ±(150.0544...)^{\frac{1}{4}}$
$h = ±3.4999...$
$h \approx ±3.50$
Check:
When $h = 3.4999...$
$ \frac{23.5(3.499...)^{4}-75}{56}$
$= \frac{23.5(150.0544...)-75}{56}$
$= \frac{3526.28-75}{56}$
$= \frac{3451.28}{56}$
$= 61.63$
When $h = -3.4999...$
$ \frac{23.5(-3.499...)^{4}-75}{56}$
$= \frac{23.5(150.0544...)-75}{56}$
$= \frac{3526.28-75}{56}$
$= \frac{3451.28}{56}$
$= 61.63$