Answer
$m-1$
Work Step by Step
Since the denominators are the same, add the numerators and copy the denominator. The given rational expression, $
\dfrac{m^2}{m+1}-\dfrac{1}{m+1}
,$ simplifies to
\begin{array}{l}\require{cancel}
\dfrac{m^2-1}{m+1}
\\\\=
\dfrac{(m+1)(m-1)}{m+1}
\\\\=
\dfrac{(\cancel{m+1})(m-1)}{\cancel{m+1}}
\\\\=
m-1
.\end{array}