Answer
$3log_{3}x-log_{3}(x+2)$
Work Step by Step
The quotient property of logarithms tells us that $log_{b}\frac{x}{y}=log_{b}x-log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{3}\frac{x^{3}}{x+2}= log_{3}x^{3}-log_{3}(x+2)$.
The power property of logarithms tells us that $log_{b}x^{r}=r log_{b}x$ (where x and b are positive real numbers, $b\ne1$, and r is a real number).
Therefore, $ log_{3}x^{3}-log_{3}(x+2)= 3log_{3}x-log_{3}(x+2)$.