Answer
$log_{11}4$
Work Step by Step
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{11}8+log_{11}3-log_{11}6= log_{11}(8\times3)-log_{11}6= log_{11}24-log_{11}6$.
The quotient property of logarithms tells us that $log_{b}\frac{x}{y}=log_{b}x-log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{11}24-log_{11}6=log_{11}\frac{24}{6}=log_{11}4$