Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 9 - Review - Page 597: 72

Answer

$log_{3}(x^{4}+2x^{3})$

Work Step by Step

The power property of logarithms tells us that $log_{b}x^{r}=r log_{b}x$ (where x and b are positive real numbers, $b\ne1$, and r is a real number). Therefore, $4log_{3}x-log_{3}x+log_{3}(x+2)=log_{3}x^{4}-log_{3}x+log_{3}(x+2)$. The quotient property of logarithms tells us that $log_{b}\frac{x}{y}=log_{b}x-log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$). Therefore, $log_{3}x^{4}-log_{3}x+log_{3}(x+2)=log_{3}\frac{x^{4}}{x}+log_{3}(x+2)=log_{3}x^{3}+log_{3}(x+2)$. The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$). Therefore, $log_{3}x^{3}+log_{3}(x+2)=log_{3}(x^{3}(x+2))=log_{3}(x^{4}+2x^{3})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.