Answer
$x=2$
Work Step by Step
By cross-multiplication and using the properties of equality, the solution to the given equation, $
\dfrac{x-3}{2}=\dfrac{x-5}{6}
,$ is
\begin{array}{l}
6(x-3)=2(x-5)
\\\\
6x-18=2x-10
\\\\
6x-2x=-10+18
\\\\
4x=8
\\\\
x=\dfrac{8}{4}
\\\\
x=2
.\end{array}