Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 362: 71

Answer

$3a^2+4a+4$

Work Step by Step

The given expression, $ \dfrac{3(a+1)^{-1}+4a^{-2}}{(a^3+a^2)^{-1}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{3}{a+1}+\dfrac{4}{a^2}}{\dfrac{1}{a^3+a^2}} \\\\= \dfrac{\dfrac{3(a^2)+4(a+1)}{a^2(a+1)}}{\dfrac{1}{a^2(a+1)}} \\\\= \dfrac{\dfrac{3(a^2)+4(a+1)}{\cancel{a^2(a+1)}}}{\dfrac{1}{\cancel{a^2(a+1)}}} \\\\= \dfrac{3(a^2)+4(a+1)}{1} \\\\= 3(a^2)+4(a+1) \\\\= 3a^2+4a+4 .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.