Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 362: 69

Answer

$\dfrac{x-3y}{x+3y}$

Work Step by Step

The given expression, $ \dfrac{\dfrac{2}{y^2}-\dfrac{5}{xy}-\dfrac{3}{x^2}}{\dfrac{2}{y^2}+\dfrac{7}{xy}+\dfrac{3}{x^2}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{x^2(2)-xy(5)-y^2(3)}{x^2y^2}}{\dfrac{x^2(2)+xy(7)+y^2(3)}{x^2y^2}} \\\\= \dfrac{\dfrac{x^2(2)-xy(5)-y^2(3)}{\cancel{x^2y^2}}}{\dfrac{x^2(2)+xy(7)+y^2(3)}{\cancel{x^2y^2}}} \\\\= \dfrac{x^2(2)-xy(5)-y^2(3)}{x^2(2)+xy(7)+y^2(3)} \\\\= \dfrac{2x^2-5xy-3y^2}{2x^2+7xy+3y^2} \\\\= \dfrac{(2x+y)(x-3y)}{(2x+y)(x+3y)} \\\\= \dfrac{(\cancel{2x+y})(x-3y)}{(\cancel{2x+y})(x+3y)} \\\\= \dfrac{x-3y}{x+3y} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.