Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 362: 67

Answer

$-x^2$

Work Step by Step

The given expression, $ \dfrac{x}{1-\dfrac{1}{1+\dfrac{1}{x}}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{x}{1-\dfrac{1}{\dfrac{x+1}{x}}} \\\\= \dfrac{x}{1-1\div\dfrac{x+1}{x}} \\\\= \dfrac{x}{1-1\cdot\dfrac{x+1}{x}} \\\\= \dfrac{x}{1-\dfrac{x+1}{x}} \\\\= \dfrac{x}{\dfrac{x-(x+1)}{x}} \\\\= \dfrac{x}{\dfrac{x-x-1}{x}} \\\\= \dfrac{x}{\dfrac{-1}{x}} \\\\= x\div\dfrac{-1}{x} \\\\= x\cdot\dfrac{x}{-1} \\\\= \dfrac{x^2}{-1} \\\\= -x^2 .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.