Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 362: 66

Answer

$2x$

Work Step by Step

The given expression, $ \dfrac{(x+2)^{-1}+(x-2)^{-1}}{(x^2-4)^{-1}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{1}{x+2}+\dfrac{1}{x-2}}{\dfrac{1}{x^2-4}} \\\\= \dfrac{\dfrac{(x-2)(1)+(x+2)(1)}{(x+2)(x-2)}}{\dfrac{1}{(x+2)(x-2)}} \\\\= \dfrac{\dfrac{(x-2)(1)+(x+2)(1)}{\cancel{(x+2)(x-2)}}}{\dfrac{1}{\cancel{(x+2)(x-2)}}} \\\\= \dfrac{(x-2)(1)+(x+2)(1)}{1} \\\\= (x-2)(1)+(x+2)(1) \\\\= x-2+x+2 \\\\= 2x .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.