Answer
$\dfrac{3(5x-3)}{3x+2}$
Work Step by Step
The given expression, $
\dfrac{5-\dfrac{3}{x}}{x+\dfrac{2}{3x}}
,$ simplifies to
\begin{array}{l}\require{cancel}
\dfrac{\dfrac{x(5)-1(3)}{x}}{\dfrac{3x(1)+1(2)}{3x}}
\\\\=
\dfrac{\dfrac{5x-3}{x}}{\dfrac{3x+2}{3x}}
\\\\=
\dfrac{5x-3}{x}\div\dfrac{3x+2}{3x}
\\\\=
\dfrac{5x-3}{x}\cdot\dfrac{3x}{3x+2}
\\\\=
\dfrac{5x-3}{\cancel{x}}\cdot\dfrac{3\cancel{x}}{3x+2}
\\\\=
\dfrac{3(5x-3)}{3x+2}
.\end{array}