Answer
$2x+y$
Work Step by Step
The given expression, $
\dfrac{\dfrac{4x^2-y^2}{xy}}{\dfrac{2}{y}-\dfrac{1}{x}}
,$ simplifies to
\begin{array}{l}\require{cancel}
\dfrac{\dfrac{(2x+y)(2x-y)}{xy}}{\dfrac{x(2)-y(1)}{xy}}
\\\\=
\dfrac{\dfrac{(2x+y)(2x-y)}{xy}}{\dfrac{2x-y}{xy}}
\\\\=
\dfrac{(2x+y)(2x-y)}{xy}\div\dfrac{2x-y}{xy}
\\\\=
\dfrac{(2x+y)(2x-y)}{xy}\cdot\dfrac{xy}{2x-y}
\\\\=
\dfrac{(2x+y)(\cancel{2x-y})}{\cancel{xy}}\cdot\dfrac{\cancel{xy}}{\cancel{2x-y}}
\\\\=
2x+y
.\end{array}