Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.1 Conic Sections: Parabolas and Circles - 13.1 Exercise Set - Page 855: 81

Answer

$r=7169\text{mm}$.

Work Step by Step

Use distance formula, $\begin{align} & \sqrt{{{\left( -580-0 \right)}^{2}}+{{\left( 0-k \right)}^{2}}}=\sqrt{{{\left( 0-0 \right)}^{2}}+{{\left( 23.5-k \right)}^{2}}} \\ & \sqrt{\left( 336400+{{k}^{2}} \right)}=\sqrt{\left( 552.25+{{k}^{2}}-47k \right)} \end{align}$ Squaring on both the sides of $\sqrt{\left( 336400+{{k}^{2}} \right)}=\sqrt{\left( 552.25+{{k}^{2}}-47k \right)}$ $\begin{align} & 336400+{{k}^{2}}=552.25+{{k}^{2}}-47k \\ & 336400-552.25={{k}^{2}}-{{k}^{2}}-47k \\ & 335847.7=-47k \\ & \frac{335847.7}{47}=-k \end{align}$ $k\approx -7145.7$ Center of the circle is $\left( 0,-7145.7 \right)$. For the radius, we use the distance formula between center of circle $\left( 0,-7145.7 \right)$ to the any point on board $\left( -580,0 \right),\left( 0,23.5 \right),\text{ and }\left( 580,0 \right)$ We use $\left( 0,23.5 \right)$ Put the center of circle $\left( 0,-7145.7 \right)$ and point $\left( 0,23.5 \right)$ in the standard equation of a circle ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}$. $\begin{align} & r=\sqrt{{{\left( 0-0 \right)}^{2}}+{{\left( -7145.7-23.5 \right)}^{2}}} \\ & r=7169\text{mm} \\ \end{align}$ Thus, the radius used for the edge of the snowboard is $r=7169\text{mm}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.