Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.1 Conic Sections: Parabolas and Circles - 13.1 Exercise Set - Page 855: 67

Answer

$2x{{y}^{3}}\sqrt[4]{3{{x}^{3}}}$

Work Step by Step

Formula used: Product rule to simplify expression: $\sqrt[n]{ab}=\sqrt[n]{a}.\sqrt[n]{b}$ $\left( \sqrt[n]{a}\text{ and }\sqrt[n]{b} \right)$ must both be real numbers. Consider expression $\sqrt[4]{48{{x}^{7}}{{y}^{12}}}$, Identifying the largest perfect fourth power factor, $\sqrt[4]{48{{x}^{7}}{{y}^{12}}}=\sqrt[4]{16\times {{x}^{4}}\times {{y}^{12}}\times 3\times {{x}^{3}}}$ Factoring into radicals, $\sqrt[4]{16\times {{x}^{4}}\times {{y}^{12}}\times 3\times {{x}^{3}}}=\sqrt[4]{16\times {{x}^{4}}\times {{y}^{12}}}\times \sqrt[4]{3\times {{x}^{3}}}$ Find the fourth root. we assume $x\ge 0$, $2x{{y}^{3}}\sqrt[4]{3{{x}^{3}}}$ Partial check: $\begin{matrix} {{\left( 2x{{y}^{3}}\sqrt[4]{3{{x}^{3}}} \right)}^{4}}\overset{?}{\mathop{=}}\,{{\left( 2 \right)}^{4}}{{\left( x \right)}^{4}}{{\left( {{y}^{3}} \right)}^{4}}{{\left( \sqrt[4]{3{{x}^{3}}} \right)}^{4}} \\ \overset{?}{\mathop{=}}\,16\times {{x}^{4}}\times {{y}^{12}}\times 3{{x}^{3}} \\ =48{{x}^{7}}{{y}^{12}} \\ \end{matrix}$ The expression $\sqrt[4]{48{{x}^{7}}{{y}^{12}}}$ can be simplified as $2x{{y}^{3}}\sqrt[4]{3{{x}^{3}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.