Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.1 Conic Sections: Parabolas and Circles - 13.1 Exercise Set - Page 855: 80

Answer

(a) Center of circle is $\left( 0,-7555.9 \right)$. (b) The radius for edge of snowboard is $r=7579\text{mm}$

Work Step by Step

(a) For the center of the circle, Use the distance formula, $\begin{align} & \sqrt{{{\left( -590-0 \right)}^{2}}+{{\left( 0-k \right)}^{2}}}=\sqrt{{{\left( 0-0 \right)}^{2}}+{{\left( 23-k \right)}^{2}}} \\ & \sqrt{\left( 348100+{{k}^{2}} \right)}=\sqrt{\left( 529+{{k}^{2}}-46k \right)} \end{align}$ Squaring on both the sides of $\sqrt{\left( 348100+{{k}^{2}} \right)}=\sqrt{\left( 529+{{k}^{2}}-46k \right)}$. $\begin{align} & 348100+{{k}^{2}}=529+{{k}^{2}}-46k \\ & 348100-529={{k}^{2}}-{{k}^{2}}-46k \\ & 347571=-46k \\ & \frac{347571}{46}=-k \end{align}$ $k\approx -7555.9$ Thus, the center of circle is $\left( 0,-7555.9 \right)$. (b) For the radius, We use distance formula between center of circle $\left( 0,-7555.9 \right)$ to the any point on board $\left( -590,0 \right),\left( 0,23 \right),\text{ and }\left( 590,0 \right)$. We use $\left( 0,23 \right)$. Put center of circle $\left( 0,-7555.9 \right)$ and point $\left( 0,23 \right)$ in standard equation of a circle ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}$. $\begin{align} & r=\sqrt{{{\left( 0-0 \right)}^{2}}+{{\left( -7555.9-23 \right)}^{2}}} \\ & r=7579\text{mm} \\ \end{align}$ Thus, the radius used for edge of snowboard is $r=7579\text{mm}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.