Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.1 Conic Sections: Parabolas and Circles - 13.1 Exercise Set - Page 855: 72

Answer

$12\sqrt{3}-3\sqrt{2}+4\sqrt{6}-2$

Work Step by Step

Consider the expression $\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)$, Apply the distributive law in the expression $\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)$, $\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)=3\times 4\sqrt{3}-3\times \sqrt{2}+\sqrt{2}\times 4\sqrt{3}-\sqrt{2}\times \sqrt{2}$ Combine and multiply the like term, $\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)=12\sqrt{3}-3\sqrt{2}+4\sqrt{6}-2$ Thus, the expression $\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)$ can be simplified as $12\sqrt{3}-3\sqrt{2}+4\sqrt{6}-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.