Answer
$12\sqrt{3}-3\sqrt{2}+4\sqrt{6}-2$
Work Step by Step
Consider the expression $\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)$,
Apply the distributive law in the expression $\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)$,
$\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)=3\times 4\sqrt{3}-3\times \sqrt{2}+\sqrt{2}\times 4\sqrt{3}-\sqrt{2}\times \sqrt{2}$
Combine and multiply the like term,
$\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)=12\sqrt{3}-3\sqrt{2}+4\sqrt{6}-2$
Thus, the expression $\left( 3+\sqrt{2} \right)\left( 4\sqrt{3}-\sqrt{2} \right)$ can be simplified as $12\sqrt{3}-3\sqrt{2}+4\sqrt{6}-2$