Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.7 Applications of Exponential Functions and Logarithmic Functions - 12.7 Exercise Set - Page 836: 40

Answer

$11\text{ years}$.

Work Step by Step

$P\left( t \right)={{P}_{0}}{{e}^{-kt}},k>0$. The exponential decay rate of krypton-85 is $6.3\%$ per year. Therefore, $k=0.063$. Now, the half-life is the amount of time necessary for half of the quantity to decay. So, if the initial quantity at time 0 is ${{P}_{0}}$, then half the quantity is $\frac{1}{2}{{P}_{0}}$. Substitute $k=0.063$ and $P\left( t \right)=\frac{1}{2}{{P}_{0}}$ in $P\left( t \right)={{P}_{0}}{{e}^{-kt}}$ and solve for $t$ as follows: $\begin{align} & P\left( t \right)={{P}_{0}}{{e}^{-kt}} \\ & \frac{1}{2}{{P}_{0}}={{P}_{0}}{{e}^{-0.063t}} \\ \end{align}$ Divide by ${{P}_{0}}$ on both sides: $\begin{align} & \frac{\frac{1}{2}{{P}_{0}}}{{{P}_{0}}}=\frac{{{P}_{0}}{{e}^{-0.063t}}}{{{P}_{0}}} \\ & \frac{1}{2}={{e}^{-0.063t}} \\ \end{align}$ Take the natural logarithm on both the sides: $\ln \frac{1}{2}=\ln {{e}^{-0.063t}}$ Use the formula $\ln {{m}^{n}}=n\ln m$ in $\ln {{e}^{-0.063t}}$: $\begin{align} & \ln \frac{1}{2}=\ln {{e}^{-0.063t}} \\ & =-0.063t\ln e \end{align}$ $\begin{align} & \ln \frac{1}{2}=-0.063t\ln e \\ & -0.6931\approx -0.063t \\ \end{align}$ $\begin{align} & \frac{-0.6931}{-0.063}\approx \frac{-0.063t}{-0.063} \\ & 11\approx t \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.